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I. Computational method 

J van Ek and A Lodder 
Faculteit der Natuurkunde en Sterrenkunde, Vrije Univerriteit, De Boelelaan 1081, 
1081 HV Amsterdam, The Netherlands 
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Abstract. It is shown that, for interstitial impurities in face-centred cubic and body-centred 
cubic transition metals, electromigration wind valences can be calculated on a microscopic 
level. The expression for the wind force in metals is discussed and is elaborated within the 
Korringa-KohwRostoker Green function formalism. Scattering of the electrons by an 
impurity at positions along possible migration paths, and surrounded by perturbed host 
atoms, isaccountedfor upto I,,, = 3. Some basic featuresof themethod are illustratedwith 
the helpof the Pd(H) and Nb(H) systems. 

1. Introduction 

The amount of experimental data on electromigration in various metallic systems is 
overwhelming [l-31 and demonstrates the intense interest in the subject over the past 
decades up to the present [4-71. In electromigration experiments impurity atoms or 
atoms surrounding vacancies are affected by an electric field through their effective 
valence in the metal under consideration. The electric field gives rise to a small driving 
force in addition to the randomly directed forces responsible for diffusion. While in 
some of the older experiments only the direction of migration [I] (i.e. the sign of the 
effective valence) was determined, other, more sophisticated, experiments are able to 
reveal the effective valence itself [l, 4,7] and even isotope effects therein [ S ,  91. 

Armed with these phenomenological data one could go a step further and ask what 
is happening at a microscopic level. Several theories for the driving force on an impurity 
in a jellium in the presence of an electric field have been formulated. Some of them are 
utilizing semiclassical ideas [1&12] and others [13-181 are on an entirely quantum- 
mechanical basis. These theories lead to different conclusions concerning the driving 
force, which evoked the so-called direct force controversy 119-211. Only as far as the 
current-induced part of the force is concerned is there agreement in the literature to a 
large extent, although different points of view exist [22-241. 

The aim of the present andsubsequent papers is to shed some light on the microscopic 
origin of the wind force in real metal-impurity systems. For that purpose first of all 
reliable wavefunctions must be available. For metals containing highly symmetrical 
substitutional or interstitial impurity clusters (including possible lattice distortion) the 
scattered Bloch states were calculated as part of investigations on Dingle temperatures 
[25,26] and residual resistivities (271. When dealing with electromigration, clusters of 
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anoblongshape and, consequently, with a muchlowersymmetryare met. A substantial 
amount of extra computational effort is to be expected in calculating the wavefunction 
at such defects in a dilute alloy. The need for such a state-of-the-art calculation of the 
wind force in electromigration was expressed by Verbrugen 14,191 when discussing 
experimental results for hydrogen in vanadium, niobium and tantalum. Until now 
interesting qualitative results have been obtained with pseudopotential methods [2& 
301, which however are only applicable to nearly-free-electron systems, or with a finite- 
cluster description [31,32] lacking certain typical features of the infinite lattice. 

The present paper is devoted to the method used. In section 2 the basic formulae 
occurring in the muffin-tin Korringa-Kohn-Rostoker (KKR) method and the KKR Green 
function description of scattered Bloch states in metal-impurity systems are briefly 
reviewed. The Brillouin zone integrations for low-symmetry configurations will be 
discussed. Some conspicuous models dealing with the driving force on an impurity in a 
jelliumarediscussedinthefirst part ofsection3,Thissystem'alwaysdidstandasamodel 
for an interstitial impurity in a real metal. In the last part of section 3 the wind force 
expression used for the impurity amidst its perturbed surroundings in a real metal is 
given a sound basis. The elaboration of this expression within the framework of the KKR 
Green function method in section 4 gives rise to Fermi surface integrals, the numerical 
evaluation of which is discussed. Section 4 ends with some crude test calculations on 
two illustrative examples, namely Pd(H) and Nb(H), indicating the mrrectness of the 
programs. Some concluding remarks are made in section 5. 

Atomic units such that h = 2m = 1, m being the electron mass, are used throughout. 
Note that 2 = 2 in this system of units. 

J van Ek and A Lodder 

2. Formalism 

The electronic structure of an infinite, perfect metal lattice can be calculated following 
the approach as formulated by Korringa [33] and by Kohn and Rostoker [34]. For 
that purpose the crystal unit cell is divided into a collection of Wigner-Seitz cells. The 
potential in a Wigner-Seitz cell is then approximated by the potential inside an inscribed 
muffin-tin (MT) sphere plus a flat potential in the remaining interstitial region. The heart 
of the MT approximation is readily recognized in the fact that in the interstitial region 
the true potential is replaced by the average value. This constant potential, however, 
then admits the adjustment of free-space solutions in the interstitial region to the regular 
solutions inside the hlT sphere. In this way a formulation in terms of information on the 
crystal structure, the phase shifts for the m potentials and a partial-wave sum for the 
Bloch states becomes feasible. The appropriate expressions and the conventions used 
are given in section 2.1. 

Introduction of a single impurity in a perfect crystal totally destroys the translational 
symmetry underlying the KKR approach. Applicationof a Green function technique with 
the perfect lattice as the unperturbed reference system will yield the scattering states 
for the electrons in the metal-impurity system. Again the result of the full multiple- 
scattering treatment [35]  of a collection of hll spheres describing a perturbed region in 
an otherwise perfect lattice can be formulated in terms of structure information on the 
impurity cluster, impurity phase shifts and a summation over partial waves for the 
scattered Bloch states. This will be described in section 2.2. 

The Brillouin zone integrals encountered in section 2.2 form the subject of section 
2.3. 
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2.1. Mufin-tin method 

The method will be described for lattices that can be divided into a collection of identical 
WignerSeitz cells containing a single atomic centre. The Schrodinger equation for an 
electron moving through the corresponding infinite array of MT potentials is given by 

The crystal potential V(r) is written as an infinite sum of  potentials u(r - R I ) ,  located 
at lattice sites$. For the eigenstate Ynk(r), around site j the KKR ansatz is made 

y~lk(x + R,) = C , L ( ~ ) R L ( ~ .  (3) 
L 

Band index n and crystal wavevector k have been combined into the single label k ,  
whereas L stands for the combination of angular momentum quantum number 1 and 
magnetic quantum number m .  The regular solutions of the radial Schrodinger equation 
for one of the (identical) M'T potentials, at energy E l  = K z ,  

R L ( ~  = R I ( K ~ ) Y L ( ~ )  (4) 

C,.,(k) = exp[ik . (R,. - R,)]C,'(k). 

are combined by unknown coefficients C&), obeying the Bloch condition 

(5) 

Because for values ofx just beyond the MT radius (x > RHT) the potential equals the MT 
constant, the asymptotic form for the regular solution 

RL(x)  = jL (x)  - i ~ t , h + ( x )  = [jl(Kx) - i ~ f , h : ( ~ x ) ] Y ~ ( . ? )  (6) 

can be used there. The YL(.?) are real spherical harmonics. The scattering amplitude 
-ixt, = i sin qr eiql contains the host phase shifts q,. The j ,  and h t  are spherical Bessel 
and Hankel functions respectively. 

A wavevector k in the first Brillouin zone is said to fulfil the KKR condition at energy 
sIlk if the determinant of the KKR matrix 

MLL+(k) = -aLL'/Ktl - igLLs(k) (7) 

vanishes. The well known structure matrices g(k) are given by 

where 

with CL,.,.a Gaunt coefficient and RjY = Rj - Rf. 
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For lattices with cubic symmetry the KKR matrix multiplied by a factor i" -'is real and 
symmetric, so it can be diagonalized by an orthogonal matrix V(k) with the orthonormal 
eigenvectors VP(k) as its columns [36] 

The transpose matrix of V(k) is denoted by V(k)  and A(k) is the diagonal matrix 
diag(P(k)) with P(k)  the eigenvalues of the KKR matrix. 

The CiL(k) in equation (3) are closely related to the eigenvector p ( k )  pertaining to 
avanishing eigenvalue denoted by Ao(k). In principle several eigenvalues with different 
indexp might vanish in different points in reciprocal space. After accounting for nor- 
malization of the Bloch wave over the Wigner-Seitz cell [37], the CiL(k) are given by 

i"-'MLLr(k) = [V(k)A(k)V(k)lLL'. (10) 

CiL(k) = -i'Vi(k) ei"'",/{dK[ -aio(k)/d&]'r=,,rf}.- 

v , ( x  + R,) = I: c,(k)jL(x) 

K [ - a r z  (It),dEl ..... C,&) = -i'WO,(k) IW e = c k  ' 

(11) 
While combination of equations (3), (6) and (11) yields the wavefunction on the r . , ~  
sphere, the same wavefunction in the interstitial region is given by [38] 

(12) 
L 

with 

(13) 
.r' ,.,..,.,..,. ,,,,,,.., 

Here the interstitial structure matrixg'(k) enters through 

and is given by 

While the V t ( k )  are always real for FCC and BCC systems, the Wp,(k) are not [39]. This 
is due to the imaginary part of g'(k) for an arbitrary interstitial position RI. In general it 
only holds that 

-iKgiL.(k) = [ - i ~ g i ~ . ( - k ) ] *  (16) 
which can be verified most easily using the (Korringa-Kohn-Rostoker-Ziman) KKRZ- 
like expression for structure factors [39,40] 

V,, being the volume of the Wigner-Seitz cell. As a consequence of (16) and the more 
common property 

Vt(-k) = (-l)'Vp,(k) 
it holdsfor the Wf(k) that 

WpL(-k) = (-1)'Wr*(k) 
which will prove to be of great value in subsection 2.2. 
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Of course, evaluation of the wavefunction at some point r = RI in the interstitial 
region of the Wigner-Seitz cell around a lattice point R, will give the same result 
whetheroneuseseither(3)withx =R,-Rior(12)withr= 0.Theangularmomentum 
summation in (3), however, must be carried out far enough, which in practical cases 
surely will be beyond the value I = 1,. above which the scattering amplitudes - k t ,  
become negligibly small. It is obvious that expression (12) in and aroundR, converges 
much faster with respect to angular momentum. The approach of interstitial positions 
via (12) has already shown its value [26] compared with earlier attempts [41] starting 
from (3). 

2.2. Scattering states 

In the previous section it has been shown that in principle at all positions r i n  the crystal 
the Bloch states Yk(r) can be evaluated. Consequently, when an impurity is present in 
the crystal, the scattering states Y, ( r )  can be obtained from a Lippmann-Schwinger 
equation 

YIlk(r )  = Y k ( r )  + Id ' r '  G(r ,r ' )AV(rr)Yk(rf ) .  (21) 

In this expression AV@) stands for the potential difference with respect to the unper- 
turbed system (i.e. the perfect crystal), and will be of a finite range. The crystal Green 
function G(r, r') at energy cis defined by 

[ p z  + V(r) - &]G(r, r') = -6(r, r') (22) 

and can be elaborated within the MT description of the crystal potential. With r = x + R, 
and n = j for a lattice site or n = I for an interstitial site the host Green function reads 
as [26] 

(23) 
x> denoting the vector with the larger modulus and I< its counterpart. Here x is a point 
in the interstitial region around RI or just outside the MT sphere around R,. When n = I, 
RI&) = jL(x)  while RiL(x) is given by (6) for x just outside the MT sphere. The Green 
function matrix elements UaLn.L' consist of Brillouin zone integrals and will be discussed 
in the next subsection. 

The expression for Yk(r)  at r = x + R, resulting from the multiple scattering of Bloch 
states by a potential AV(r) represented by a collection of MT spheres, is assumed to be 
of the form 

where the index ff comes from the position vector Ra pointing to a, possibly displaced 
from its original position R,, atomic centre within the range of AV(r). For the case of 
substitutional and interstitial impurities, accompanied by moderate lattice distortion, 
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comparison of (24) with (3), (12) and (23) substituted in (21) results in a relation [35] 
that connects the scattering coefficients C,,(k) through 

J van Ek andA Lodder 

to the host wavefunctioncoefficients C.,(k). The back-scattering matrix A incorporates 
all multiple-scattering effects into the description. Its inverse is given by 

= JLL.(-A,)ann, - 2 ~ n L n , L . J L " L , ( - A . n , ) A t ~ ~ .  (26) 

ThematrixJLLe(An) accountsfor the displacement ofthecentreat R.over asmallvector 
A, to R, f An and is given by 

L" 

JLL'(A) = 4 3 ~ i ~ - ~ '  if"CLLLvjL.(A) (27) 

E J ~ ~ , , ( A ) J ~ ~ ~ ( - A )  = C = 8 L L r .  (28) 

L" 

at energy E = K ~ ,  The matricesJ(A) have the property that 

L* L' 

Information concerning AV(r) enters through the differencesof tmatrices in expression 
(26) 

(n =i) (294 

AI;, = t :  (n = I). (29b) 
Apparently the matrix ti for a perturbed, possibly displaced, host atom as well as the f 
matrices for the interstitial, f r ,  and an unperturbed host atom, t ,  are degenerate with 
respect to the magnetic quantum number m.  This indicates that they pertain to spheri- 
cally averaged MT potentials. 

It might be worth noting that even in a non-self-consistent treatment the scattered 
wave @*(r) reaches over the entire crystal, although AV(r) has a finite range. This can 
be viewed as a true manifestation of back-scattering effects. The way in which this is 
realized can be understood most easily by inspection of (26) for the case of a single 
impurity in an otherwise perfect lattice. The matrix A-' then schematically looks like 

i At;, = t l  - fy  

Then the matrix A has the same shape, and even around a distant host atom, say at 
R,, the coefficients cmL(k)  differ from C,,(k) because of the admixture of ClL(k) via 
expression (25). 

One also should note from (30) that det A (or det A-' )  remains the same, no matter 
how far the matrix is extended. The determinant essentially is built by atomic centres 
with At;, # 0, lying in the perturbed regions (i.e. AV(r) # 0) of the crystal. The way in 
which the matrixA enters the generalized Friedel sum rule [42] 

2 2 
n nL n AZ = --E AqE -t - Im In det A 

with AqL = q{ and A q i  = q: - . q , ,  thus shows that only centres with At;, # O  con- 
tribute to the change in the number of electrons AZ due to the imperfection. One 
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can now demand that for a perturbing potential AV(r) it at least must hold that the 
accompanying phase shifts satisfy (31). Of course a self-consistent treatment of the 
system would alter the shape of A-' in (30) and give rise to a situation where the 
contribution to AZ of atomic centres beyond a certain range becomes negligible. 

For any appropriate approximation of the crystal potential V(r)  and the perturbation 
potential AV(r) in terms of mpotentials it is now possible to determine the Bloch states 
and the way they are scattered by AV(r).  There remains the laborious task ofcalculating 
the GnWL8 in a given impurity cluster. 

2.3. Brillouin zone integrals 

The Green function matrix elements, at energy E = K ~ ,  in (23) and (26) occur in four 
fohns [38,39,41] 

1 
tr%iLIL. =---I xvBZ ~z d3ke"'Rir [M-'(k)(-iKg'( -k))lLL' (336) 

1 
= - - d3 k[( -iKg'(k))M-' (k)(-i~g'( - k))ILL* (34) 

K V S Z  l ~ z  

when dealing with only one interstitial position. These integrals over the first Brillouin 
zone with volume V,, all have singular integrands on the constant energy surface E~ = 
K ~ ,  where the KKR condition is satisfied (det M ( k )  = 0). In addition the integrand of 
GILIL~haspolesonthefree-electronspherewherek2 = E. From(lO)and(l9)itisobvious 
that 

MEi, (k)  = zi'V;(k)Li'V;.(-k) w) (35) 
P 

revealing clearly the singularities due to det M(k)  = 0 through vanishing eigenvalues 
Ao(k). These singularities as well as the free-electron poles ( K ~  - /?)-I diverge like I/x 
with x = Lo@) or x = ( K ~  - k2) and can therefore be taken care of using 

When (36) is applied to (32), (33) and (34) using (35) and (14) one arrives at 
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The residual part in the above expressions is a Fermi surface integral where it is to be 
understood that there might be several roots, A'@), of the KKR equations that define 
different sheets of the Fermi surface. The additional singularity at k2 = E in (34) gives 
rise to a residual part which can be evaluated analytically, resulting in - i d L L ,  in (39). 
Some important properties of these integrals are 1391 

(40) %iwL' = %i"'iL - - % .  ,.. L (-1)1+1' 

gfL jL '  %,L~IL ( 4 1 )  

~ I L I L ,  ~ I L ' I L .  (42) 

M L L ' ( k )  = ( - l ) l + ' r M c L ( k )  = IML.L(-k). 

These equalities are most easily verified, starting from (32), (33) and (34) and noting 
that 

(43) 
While the set of difference vectors RiI. and the KKR matrix M ( k )  transform according 

tothecubicgroup(pointgroupOh)in~CCand6CC lattices, thepointgroupunderwhich 
the vectors RI, and consequently the interstitial structure matrices g'(k) transform can 
be of much lower order, depending on the position of the migrating atom along its path. 
It is clear that the computational effort needed to calculate (38) and (39) will be much 
greater than that for (37).  First, the irreducible part of the Brillouin zone over which the 
integral must be evaluated for a general interstitial position will be larger. Secondly, the 
complex interstitial structure matrices must be evaluated for a correspondingly larger 
number of k-vectors. As a third point the evaluation ofg'(k) itself is more complicated, 
when compared tog(k), owing to the more restricted use of symmetry in the lattice sum 
overRliin equation (15). 

3. Electromigration 

3.1. Introduction 

Randomly directed steps of particles in a lattice gas lead to diffusive motion (431. In 
metals the diffusion rate of impurities depends heavily on the nature of the diffusion 
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mechanism. An increase of the.temperature iii general increases the diffusion rate. In 
metal-impurity systems in thermodynamic equilibrium there is no net flow of impurity 
atoms, although the individual atoms still exhibit random thermal motion. By means of 
an electric field the motion of the individual impurities can he influenced, resulting in a 
net atomic flow. This phenomenon is the result of both the additional force due to the 
external field and the mobility of the impurities. The atomic flux is determined by the 
product of this driving force and the mobility, which is connected to the diffusion 
coefficient through the Einstein relation [44]. 

The driving force F exerted on impurities in an electron gas by an external field E, 
although being an extremely complicated quantity, can be expressed by a stimulus- 
response relation as simple as 

Here Z* is a completely phenomenological proportionality constant, called the effective 
valence of the impurity in the electron gas under consideration, and e le1 is the 
elementary charge. Usually one distinguishes two different contributions to this total 
force, a direct force and a wind force. The direct force Fdi, is due to the direct action 
ofthe fieldon theimpuritynucleusand theelectronssurroundingit. Furtherthe electrons 
in the current generated by the electric field are scattered by the impurity. As a result of 
this interaction the so-called wind force Fwind arises. Equation (44a) can be rewritten in 
terms of these two forces and their accompanying valences zdi,,, and Zwind as 

(446) 
Many attempts have been made to give this relation, or elementsof this relation, a more 
formal basis. They all have in common that the system under consideration is a jellium 
with a distribution of non-interacting impurities. In general this system serves asa  model 
for interstitial impurities in metals. 

The oldest model is due to Fiks [lo] and Huntington and Grone [ll] and it concerns 
the wind force. The transport relaxation time r for the electrons is used to  calculate the 
momentumpickedup by anelectrongas withdensityninanelectricfield. Thefrequency 
of electron impurity collisions is given by l/r,, the reciprocal electron-impurity relax- 
ation time. It is assumed that during such a collision the electron transfers all of its 
momentum to the impurity. For impurity density n, this ballistic model leads to 

which is always in the direction opposed to the field direction. Equivalently, usingp-' = 
n&/m and p;' = nezri/m for the bulk and residual resistivity, p and p,, respectively, 

Bosvieux and Friedel 1131 (BF) argued that, within the independent-electron picture, 
the conduction electrons completely screen out the external field at the position of the 
impurity. They end up with a quantum-mechanical expression for the total force on the 
hare (ionic) impurity 

F = Z*eE. (444 

F = Fdirect 4- F,nd = (Zdiren + ZwindkE. 

Fwrnd = -(ner/nir;)E (454  

Fwind = - (np,/nip)eE. (456) 

Fwind = -  d3rn(T)VgIUbare(T-R1) ( 4 6 ~ )  

n(r) = 2f(dl%(r)IZ (466) 

I 
with electron density 

k 

and an unscreened ionic impurity potential ubare(r - RI) for an impurity at position RI. 
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The summation over k includes the two spin eigenstates. Clearly the BF wind force is 
rooted in the non-equilibrium distribution for the conduction electrons, as expressed by 
the field-dependent part of the distribution function 

J uan Ek and A Lodder 

f ( 4  = f O ( ~ . J  + e5uk .~lafo(~)/W=,,. (464  

In the original paper the single-particle wavefunctions 6&) satisfy a Schrodinger 
equation, with potential 

u ( r - R , ) = o , ( r - R I ) +  u E ( r - R l ) ,  ( 4 6 4  

only to first order in u(r - Rl) .  Here u I ( r  - R , )  is the electron-impurity interaction in 
the absence of the electric field E .  Owing to the field, a slightly altered Fermi-Dirac 
distribution brings about a change in electron density around the impurity, thus intro- 
ducing an extra potential uE(r - R I ) .  

Landauer and Woo 1221 heuristically derived contributions that are second-order in 
u(r - R l ) ,  The physically appealing concept of residual resistivity dipoles [45 ]  (RRD) 
plays an important role. The RRD set up an electric field around an impurity just strong 
enough to make the electrons overcome the local increase in resistivity. It is clear that 
on average this additional field must point in the same direction as the external field. 
Landauer and Woo thus show that the RRD field gives a contribution to the wind force 
aligned in the direction of the external field. Note that neither Bosvieux and Friedel nor 
Landauer and Woo take the electron-impurity interaction in the absence of the field 
into account to all orders. This limitation can be removed, as shown by Sham 1151 and 
discussed more explicitly by Sorbello [U]. 

Sorbello performed model calculations on an s scatterer in a jellium. The electron- 
impurity scattering was treated up to all orders in ul(r - R I ) .  The electron density 
that he found after insertion of the scattered wave into (46b) clearly revealed the BF 
contribution as well as the RRD contribution. After applying Thomas-Fermi screening 
to this non-equilibrium electron density the formal separation into BF and RRD con- 
tributions was retained in the new expression for the density. At the position of the 
impurity, however, the RRD field turned out to point in a direction opposite to what 
Landauer and Woo predicted. From this Sorbello concluded that for more complex 
(higher angular momentum) scatterers a t-matrix treatment will yield the complete 
electron density, not admitting such a clear distinction between BF and RRD contri- 
butions. Contrary to what Landauer and Woo assumed the RRD charge distribution for 
thesscattererwasfound to bespatially extended: '. . . the ~R~ishidden,chameleonlike, 
within the Friedel oscillations . . . ' ,as Sorbello puts it.  

After this outline of the basic models in electromigration theory, section 3.2 intro- 
duces more recent developments based on linear response theory. The implications for 
theexpressionforthe wind forceindealing with arealmetal-impuritysystem,compared 
with a simple jellium system, are considered in section 3.3. 

3.2. Linear response 
More recent theoretical investigations on the driving force in electromigration all start 
fromanimportant resultduetoKumarandSorbello[14]. Afterdecouplingtheelectronic 
coordinates from the impurity coordinates through the Bom-Oppenheimer approxi- 
mation, they arrived at a formally exact expression within Kubo's linear response 
theory. The driving force is given by a response function describing the response of 
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the unperturbed system, with Hamiltonian H ,  to an oscillating external field E(t)  = 

F ( t )  = ZeE(r) - ie E,(t) 1 df' Tr(po(H)[ -vRIV(t ' ) ,  r ; ] )  (47a) 

E e-iot+or 

(L 

Y 0 i 

in which a = +O assures adiabatic switching on of the field. The summation over U 
indicates a dot product of the field with the coordinate rj of the jth electron. The great 
advantage of such an approach is that the grand canonical density operator for the 
equilibrium system po(H) can have a very realistic Hamiltonian as its argument. The 
total interaction between the impurities, numbered by CY, and the electrons is given by 

in the r representation and is also contained in N. Differentiation of V with respect to 
U,, the coordinate of the impurity under consideration, constitutes the force operator. 
In (47a) this operator occurs in the Heisenberg picture 

-VRIV(z) = e+iHr(-VR,ll)e-'"', (474 

Although formally exact, expression (47a) contains a trace over a commutator 
weighted with the full many-body density operator and can therefore be considered as 
intractable. By treating the electron-electron interaction in an approximate way and 
neglecting certain inelastic effects in the electron-phonon interaction, it is possible to 
replace H by a sum of single-particle Hamiltonians 

H = hi. 
i 

It is still possible to account for the phonon field by averaging over the canonical phonon 
ensemble afterwards [HI. Application of (48) to (47) results in the expression 

F(t) = ZeE(t) - ie E,(t) dt' e("-')" tr{fo(h)lfi(t'), I"]} (49) 
0 

containing a single-particle trace. Heref,(h) is the equilibrium Fermi-Dirac distribution 
function in operator form andf, the force operator for the impurity under consideration 

f l  = - v R I V l  (50) 

where u1 in the r representation equals u,(r -UI) being one term of the right-hand 
side of (47b) but by now self-consistently dressed with screening electrons due to the 
transition to a single-particle description (see equation (48)). This dressed potential is 
therefore different from the bare potential used by Bosvieux and Friedel in their 
expression (46u) for the total force. 

If the phonon field is left out of consideration h can be taken to be 

h = h o  + u 1  + U, 
a#] 

with hQ the single-particle Hamiltonian for the electron in the absence of the impurity 
potentials. The electron-electron interaction is supposed to be accounted for in h at, for 
instance, the local density level. The replacement of electrons with mutual interaction 
by independently moving quasi-particles always did prove to work remarkably well even 
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in rather complicated metallic electron gas systems. In the case of low impurity density 
it can be shown that the U, (a # 1) take care of the dissipation in the system, while it is 
v 1  that accounts for the local situation around R I .  Hence it might be conjectured that 
the phonon field, previouslydiscarded, can be regarded ascontributingto thedissipation 
as well and, consequently, to the inverse electrical transport relaxation time r-’. Using 
Liouville operators with the commutator generating property when acting on another 
operator A 

J van Ek and A Lodder 

RA=[h ,A]  (524  

(526) 

and consequently 
e%ZA = etihtA e-ihl 

expression (49) can be rewitten in the DC limit (w = 0) as [18] 

The seemingly superfluous division made in (53) has a twofold purpose. In the first place 
it can be shown that, in the low dissipation limit (z-. m), thesumofthe first twomembers 
of the right-hand side of (53) vanishes. Secondly, for a system containing only one 
impurity, in the same IOW dissipation limit it can be shown that the third member, when 
evaluated in the basis of eigenkets Ik) of h, at eigenvalues r t ,  exactly equals [45] 

with Y k  the exact local wavefunction. This expression strongly resembles the Bosvieux- 
Friedel expression for the wind force, the difference being the replacement of ubrL by 
uI. Further it can be demonstrated [46] that (54) reduces to the ballistic wind force 
expression (45a) with r = u-l ,  upon substitution of 

with the regular solution of the Schrodinger equation RL(r) having the asymptotic form 
(6) for an independent particle in jellium. 

The evaluation of (47a) described above strongly benefits from the use of Liouville 
operators, The time integration in (49) can be carried out leading to the resolvent 
( R  t ia)-I. Another approach to the evaluation of (470) makes use of the method of 
quantum field theory [15,16] involving temperature Green functions [47]. Following 
Shsm’sanalysisoftheresponse function in IetmsofFeynmandiagrams, Sorbelloshowed 
[48] that the results of Rimbey and Sorbello [16] could be simplified to 

(56)  
4 

F = -- Im kz[G(k ,  k ,  FF) - G,(k,  k ,  r,)]eE + Fwin.j 
3z k 

with zero-temperature Green functions at the Fermi energy cF 

Go(k, k ,  E F )  = @]1/(€$ - hollk) (570) 

G(k,k,~~)=fkI l / [e$ -(ho + ui)]lk), (57b) 
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The direct force term in (56) is what remains after exact cancellation of nuclear charges 
corresponding to negative energy states (bound states). Unfortunately i t  is not easy to 
make a comparison of (56) with (53) for there is no dissipation present in (56). Clearly 
the vanishing of the direct force in (56) upon taking a+ m cannot be reproduced. 
However, (53)  as well as (56) in general predict only a partially screened direct force, 
contrary to complete screening as found by Bosvieux and Friedel. 

3.3. Wind force 

The aforementioned expressions for the driving force all reveal a contribution pro- 
portional to the deviation from the equilibrium Fermi-Dirac distribution, termed the 
wind force. This force can be pictured as arising from the unequal occupation numbers 
for incident electrons in states Yk(r) and T k ( r ) .  Consequently the occupation of the 
scattering states Y&) and @L&) will be influenced, giving rise to an anisotropic charge 
density around the impurity 

All authors agree about the form of the quantum-mechanical expression for the wind 
force, namely the Bosvieux-Friedel expression (46a). There remains only one point of 
discussion, for in equation (46a) the bare (ionic) potential is used in the force operator 
while in expression (54) it is the screened electron-impurity potential which shows up. 
The reason for this is that in the original paper 1131 Bosvieux and Friedel only paid 
attention to the electric field at the position of the migrating ion, which has not always 
been realized in later work [19]. Within the single-particle approximation, however, an 
electron moves in the self-consistent field of all other charged particles. It therefore has 
interaction with the combined fields of the impurity and all other electrons. The correct 
expression for the wind force then reads 

with @&) related to u l ( r  - R I )  through the self-consistent solution of the Schrodinger 
equation 

More explicitly, in the independent-electron approximation electrons in single-particle 
states Yk(r) only have a self-consistent interaction with 

U I  (r - RI)  = Ubare(r - R I )  + U m e ~ n ( ~  - (606) 
where usi;rrcn is due to the effect of all electrons. Because the Born-Oppenheimer 
approximation was invoked at an early stage it is automatically assumed that U,,,, 
instantaneously moves along with the nucleus of the impurity. In this way it is assured 
that -VR,  acts on both ubare and U,,,,, in the same way. It should be precisely this kind 
of self-consistent electron-impurity potential that appears upon changing from the true 
system Hamiltonian H to a sum of single-particle Hamiltonians in equation (48) with 

Once this matter has been settled it is interesting to investigate the applicability of 
(59) to interstitial impurities in real metals. A difference between a jellium and a real 
metal that immediately leaps to mind is the anisotropy at a general position in the latter 

(51). 
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system. As a consequence plane waves lk)  must be replaced by Bloch states Ink) = Ik), 
describing the independent-electron states in a translationally invariant metal lattice. 
The anisotropy also brings about that not all interstitial positions are equally accessible 
to the impurity, that is, only a restricted number of migration paths, defined by the 
symmetry of the lattice, are walked. Of course, in an anisotropic system the wind force 
on an impurity becomes position-dependent, 

J uan Ek and A Lodder 

Fwind = ZwindR&E (61) 
withEhod(RI) a 3 x 3 symmetric tensor. The reduction of this theoretical wind valence 
tensor to a scalar quantity, which can be compared to what an experimentalist measures 
for FCC and BCC crystals, involves some ideas about diffusion mechanisms and will be 
addressed extensively in a subsequent paper. At the present stage all attention will be 
devoted to the justification of the adaption of equation (59) to the band structure of real 
metals, 

(620) Fwind(Rt) = C f ( & t ) @ d r ; R l ) /  - V.Q,vl(r - RI) I*k(r;Ri )). 
Ir  

The functions qIk(r; RI)  are the exact local wavefunctions obeying 

(626) 
~~ ~ 

[p2 + V(r) + AV(r;R,)  - ck]Yk(r;  R~,) = O ; ~ ~ ~  
Both @k and A V  carry the impurity position in the spirit of the Born-Oppenheimer 
approximation, that is to say, theydepend on R, only in a parametric way. All dynamics 
involving the coupling of R, and RI  to electronic coordinates has.been neglected. The 
calculation of Yk is performed with fixed positions of the nuclei determining AV. 

Given a perturbing potential A V  which includes the migrating interstitial nucleus, 
there remain two important questions. First, one could ask to what extent the band 
index n holds back the derivation of (54) as performed by Lodder [46]. There the third 
member of the right-hand side of (53), before the time integration has been carried out, 
is evaluated for the case of a single impurity in an otherwise unperturbed system. For a 
real metal, matrix elements occurring in the trace 

C- (nkI[fo(ho), r V l f t  (r)Ink) ( 6 3 4  
nk 

have to be evaluated. After insertion of a complete set of eigenstates just after the 
commutator, non-diagonal factors 

(nkl[fo(ho), r”1 In’k‘) (636) 
emerge. When the Bloch states are evaluated in the coordinate representation, diag- 
onality in k can be demonstrated through the transformation r = r‘ + R ,  where R is a 
lattice vector. Application of the Bloch theorem yields a factor that must be 
equal to one, which constitutes the desired result in the first Brillouin zone. Using the 
well known identity 1491 

i P  
[ fo (h ) , r”]  =;I dnfo(h)p”(-U)esch-P)f0(h) (634 

(i/m)(nklp” I n ’ M -  t fo(&,d - f d & . d l / ( & . ~  - & n * k ) h  ( 6 3 4  

0 

where p = (kT)-’  and p is the chemical potential, (636) can be expressed as 

In metals, at moderate temperatures, p can be safely approximated by cF. 
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A closer look at the statistical part in (63d) immediately reveals that the matrix 
elements diagonal in the band index (i.e. E.,~-+ E , ~ )  give the usual elastic or recoilless 
single-band contributions, weighted by the energy derivative of the Fermi-Dirac dis- 
tribution function. At T = 0 only diagonal matrix elements at E~ need to be accounted 
for. At finite temperatures more of these diagonal terms, weighted by -dfo(&)/d&, 
contribute. In addition inelastic inter-band matrix elements, between states with the 
same wavevector k, may arise. Of course the availability of states that are moderately 
separated in energy determines the importance of this effect relative to the delta- 
function-like intra-band contributions in ( 6 3 4 .  From the band structure of various 
metals (AI, Cu, Ag, Pd, V and Nb) [50] it can be seen that inelastic inter-band con- 
tributions arise only from limited regions in k-space. This ocurs, for instance, when a 
degenerate energy band starts to split up around the Fermi level. Intra-band contri- 
butions, however, extend over the entire constant energy surface E = cnt = and are 
therefore expected to be of much more importance. In fact, as mentioned by Sorbello 
[28], the electron-impurity scattering events themselves turn out to be predominantly 
recoilless(>99%). Thismeansthat alldynamicsoftheimpuritycan beignored,although 
recently some doubt was cast upon this assumption [51]. 

For diagonal matrix elements of the force operator 

with 

it can be shown that the time-dependent factors in (64) transform the Bloch states into 
the exact local wavefunctions. Because in the original proof [46] nothing more than the 
requirement thaf Ink) be an eigenvector of hoand I Y&) be an eigenvector of hl was used, 
it also holds in (63) that e-*l'l nk) can be replaced by e-".*'I Ynk). This establishes that 
(67~2) is applicable to interstitial impurities in real metals. Inter-band terms are not 
included; all intra-band contributions are accounted for to their full extent. 

The second question that has to be answered concerns the potential U ,  for the 
migrating atom. If one imagines an interstitial impurity, surrounded by perturbed 
host atoms, it is not immediately clear what in fact constitutes the migrating entity. 
Alternatively formulated, one may ask to which part of A V(r; R I )  the gradient operator 
should be applied in order to obtainf,. This certainly is not a trivial question. Although 
there will exist a wind force on AV(r;Rl) as a whole, owing to the immobility of the 
perturbed host atoms in AV(r; RI), work will be performed on matter in the interstitial 
region around the impurity nucleus only. It is the electrons and the impurity nucleus in 
this region that contribute to u 1  and hence tof,, while the use of AV(r; R I )  as a whole in 
equation (626) should assure a correct description of the local wavefunction. When 
preparing for actual wind force calculations in the subsequent paper, the choice of 
suitable potentials will be outlined and discussed extensively. Only determination of the 
force on the moving entity in AV(r; R I )  will lead to ZWnd(R1) values that can he compared 
to experimental Z* values, after a proper reduction of the 3 x 3 tensor to a scalar Z,,,. 

4. Muffin-tin multiple-scattering description of Zeod(R1) 

4.1. Basic expressions 

In real metals the deviation from the equilibrium distribution function, linear in the 
applied field, is given by 

hl  = ho + AV(r;R,) (65) 
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f (&d - f d 4  = .E[--afO(E)/aEls=ek (66) 

in which Ak is the vector mean free path. Only this pan off(&,) is responsible for the 
wind force andenters(62a) ascan be seen from (634.  When (66) issubstituted in (62a), 
after conversion of the summation over spin states k into integrations over surfaces of 
constant energy in the first Brillouin zone and neglecting inter-band contributions, one 
arrives at 

- V,, v I (r - R 1) 1 *, (r; R I  )) 8 (67) 

where x denotes the dyadic product, 
Although thermal broadening of the Fermi-Dirac distribution function could be 

accounted for in (67), for the time being zero temperature will be assumed, so af,(&)/ 
JF = -&(& - +), After substitution of (24). the matrix element in (67) can be shown 
(see appendix) to equal 

I+  I 

B F ~  2 (cotq!+~ -cot V ! ) D L t + l . m t  R ~ [ / ~ I ~ ! ~ ~ + I , ~ ~ ( ~ ) C I L ( ~ ) I .  (68) 
L m l = - l - l  

After substitution of this expression in (67) and comparing with (61) the wind valence 
tensor for the impurity at R I  is given by 

Z , ~ , ~ ( R I ) = ~ E F X  2 ( m t d + i  - COt7;)Du+i*m, Re( t~+Ir jWt+l , , , ,~ )  (694 
I +  I 

L m 1 = - l - 1  

with 

and the vectorial matrix 

In general no k-dependent mean free paths including all scattering processes are 
available and the Ziman approximation [52] Ak = TU, must be invoked. Furthermore 
the alloy wavefunction coefficients can be replaced by the right-hand side of (25) leaving 
an integral over the Fermi surface with an integrand that comprises only host quantities, 

The host integral in (70) has an integrand that behaves regularly over the entire Fermi 
surface. This integral can be evaluated in terms of eigenvectors of the KKR matrix and 
interstitial structure constants, as will be shown in  the next section. 
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4.2. Properties of the Fermi surface integrals 

In order to arrive at some general properties of the integrals occurring in (70), with the 
help of (11) and (13) the following notation is introduced: 

It is easy to demonstrate the Hermitian property 

I,,..,. =I.*.,.,, (724  

with respect to the indices (nL,  n'L'). This property equally well applies to W,,. with 
respect to (L, L' ) ,  which can be trivially established from equation (69c). Furthermore 
it is worth noting that the vectorial matrices I are purely imaginary, which follows from 
(72a) on the one hand and from the equality 

I n ~ n , ~ *  = (726) 

on the other. Property (72b) is readily derived by explicit interchange of the appropriate 
factors in the integrands of (71) and using (19) and (20). 

The reader might have noticed a superficial similarity between I , ,Ln~L~ and the residual 
parts of the %nLnLn.L, in (37) to (39). When for instance I,,,. is rewritten as 

and compared to the residual part of %,LjL. (see (38a)) 

one notices that a major part of the integrands is equal and therefore has to be calculated 
only once, which reduces the computational effort to some extent when dealing with 
low-symmetry impurity clusters. Of course the same applies to IjLrL. and 
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Thevectorialcharacterofliscarried bytheunitvector inthedirectionofthevelocity. 
On the Fermi surface, being the constant energy surface at E = eF, it holds that 

dEk 5 d k .  V X E ~  + dAo(k) c7&,/ado(k) 0 (73a) 

Vk = [ -v ,nO(k)[a&,/anO(k)]  (73b) 

ax = -ti,no(k). (734 

and consequently 

and 

The numerical determination of [aA*(k)/Je,]-' of course needs solutions of the KKR 
equations at energies just around E = 

4.3. Computational nspects 

If the methods outlined in the preceding sections are to he applied to interstitial 
impurities in FCC or BCC metals, first of all MT potentials describing the metallic host are 
needed. The Fermi energy is then determined by demanding that the electron-like 
volumes inside the different sheets of the Fermi surface add up to the chemical valence 
of the metal. The phase shifts qr (l,,,,, = 3) at the Fermi energy are used to produce an 
integration mesh in the first Brillouin zone with an increasing density of k-points upon 
approaching the singularities at the Fermi surface and the free-electron sphere (section 
2.3). This mesh is produced by a program KKRMESH that iteratively approaches the 
singular surfaces, thereby dividing the 1/48th irreducible part of the Brillouin zone into 
a large number of tetrahedra 1531. For each of the four k-points defining the corners of 
a tetrahedron the matrix V(k) (see (10)) and the eigenvaluesP(k) are stored. The Fermi 
surface itself is given in terms of triangular surface elements defined by three k-points, 
for which the V"(k) ,  V d o ( k )  and JAo(k)/Jek are stored. A special program (LINMESH) 
reduces the number of k-points that occur more than once in adjacent tetrahedra 
or triangles. This compressed mesh consists of a collection of unique k-points and 
corresponding eigenvectors, eigenvalues and gradients plus information on how to build 
the original mesh from this collection. 

Using the 48 orthogonal transformations 0, (i = 1, . . . ,481 ofthe point group Oh, 
the mesh can be extended to the entire Brillouin zone, 

Oik = k' 

P ( k ' )  = P(k) 
VP(k') = UiVP(k) 

(74) M(k') = UiM(k)U;' 

where U; are the corresponding transformations in the function space spanned by the 
real spherical harmonics. When dealing with the Green function for a general interstitial 
position, the integrals must be evaluated over the correspondingly larger irreducible 
part of k-space belonging to the point group of the interstitial position in the crystal. 
This necessity comes from the interstitial structure matrices g'(k) through W ( k )  in 
(38b), (39), (71b) and (71c). The structure matrices are evaluated with the efficient 
Ewaldsummation method [54] but nevertheless demand the major part of the computer 
time needed to calculate the integrals. In a detailed study of the de Haas-van Alphen 
effect in Pd(H), Oppeneer et ai [26,55,56] already calculated the aforementioned 
integrals for the special case of a hydrogen atom at an octahedral site in the FCC lattice. 
In that work explicit use was made of the fact that the irreducible part remains 1/48th 
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of the Brillouin zone and that i"-'[-irg'(k)] is purely real. These results served as a test 
for the new programs. When applied to the octahedral position the new programs give 
the same results for +lJLjL2 and % I L I L ~ .  

The actual evaluation of the integrals is much in the spirit of Oppeneer's approach 
although the programs were designed in such a way that optimal use could be made of 
the vector facilities on a Cyber 995E computer under the NOS/VE operating system of 
CDC. Vectorization was done on the index labelling the k-vector in the Brillouin zone 
mesh throughout the program INTEG. In this way even integrations over 1/4th part of 
the Brillouin zone could be performed within an acceptable computer time span. 

Finally integrals over irreducible parts are converted to integrals over the entire 
Brillouin zone by applying all elements in the point group. For example Gl~iL-  andliLjL. 
are assembled through 

and 

where h denotes the order of the point group. Note that integrals over irreducible parts 
for different vectors Op,, (i = 1,. . . , h )  are mixed togethertogive the desired complete 
integral for Itl l ,  The program SYMMETRY performing this last step consumes a negligible 
amount of computer time when compared with the previous programs. 

Now with appropriate phase shifts q1 the matrix A-'  (see (26)) can be constructed. 
After inversion of A-' the vectorial matrix W is built and the wind valence tensor (69a) 
can becalculatedinalast step. In the next, finalsubsectiontheoperationand the relative 
time consumption of the programs will be illustrated by Pd(H) and Nb(H) serving as 
representative examples of fcc and BCC systems. 

4.4. Examples: Pd(H) and Nb(H) 

Palladium, beinganfccmetal withlattice parametera = 7.351 Bohr, hasacomplicated 
Fermi surface consisting of three separate sheets when neglecting spin-orbit coupling 
1571. There are the central rsheet,  the jungle gym (JG) sheet, often encountered when 
dealing with d electrons, and the X-hole pockets. Further it is known that hydrogen 
occupies the octahedral position. Migration might take place along the [I 111 direction 
pointing towards the tetrahedral position [58]. Along this path the symmetry operations 
defining the point group C,, are present (h  = 6). The potentials used by Oppeneer et al 
[26] give E~ = 0.515 Ryd above the MT zero. An angular momentum cut-off at lma, = 3 
was used. The Brillouin zone mesh inside the 1/48th irreducible part consists of 11 138 
tetrahedra giving rise to a reduced set of 4610 k-vectors. An additional reduced set of 
767 k-vectors for the different sheets of the Fermi surface represent 269 (r), 471 (JG) 
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Table 1. Phase shifts qI in radians at tF = 0.515 Ryd for host Pd atoms, lhe octahedral 
impurity cluster and the tetrahedral impurity cluster. The last column displays the wr radii 
for the different atoms in Bohr. 

Pd host -0.460649 -0.094 864 -0.298246 0.001 546 2,3891 

HoctahedraI 1.259393 O.DZ4300 0.000440 0.000005 1.2864 
Pd fin1 shell -0.049794 -0.091 142 -0.291735 0.001 589 2.3891 

H tetrahedral 0.872207 0,005 979 0.000045 <IO-' 0.7939 
Pd first shell -0.433511 -0,085589 -0.282298 0.001 654 2.3891 

and 56 (X) triangles enclosing volumes of 0.309, 1,704 and 1.991 electrons respectively. 
Together with six electrons in filled Brillouin zones this adds up to 10.004 valence 
electrons. Note that for the numerical evaluation of (38a), (3%) and (39) a total number 
of S(4610 + 767) = 43 016 complex interstitial structure matrices had to be calculated. 
After havingcalculated the integrals G andlfor the octahedral and tetrahedral positions 
the A-matrix is constructed. The phase shifts used for the interstitial atom at the 
octahedral position and for the first shell of perturbed host atoms surrounding it are 
those given by Oppeneer in the Pd(H) paper [26]. For the tetrahedral position phase 
shifts were calculated for potentials that have been constructed fol1owin.g the same 
recipe.Bothsetsofphaseshiftsaregiven in table 1,Theydonotincludelatticedistortion 
nor do they satisfy theFriedelsum rule. For the present purposeofshowingthe feasibility 
of wind valence calculations this is not important. 

The resulting3 x 3 tensor for an octahedral hydrogen atom is 

-=[ i~ -0.01097 0.00000 0.00000 

0.000 00 -0.010 97 0.000 00 

0.000 00 0.000 00 -0.010 9.7: 

Z O F '  -W"d 

5 

while at the tetrahedral position if is 

i 0.001 26 0.00003 0.00003 

~- 0.00003 0.00126 0.00003 . ""-( 0.00003 0..00003 0,00126 ~. 
5 

Although the free-electron picture certainly does not apply to Pd, one might get an 
impression of the magnitude of the wind valence by multiplying these matrices with a r 
value of about 10 as derived from the bulk resistivity [59] at room temperature using the 
free-electron expression for the resistivity [52]. Symmetry demands diagonality at both 
the octahedral and tetrahedral positions. This is realized at the tetrahedral position only 
in an approximate way. The small off-diagonal elements are due to the specific way in 
which theinterstitialstructurematricesareevaluated. Thedirect-spacepartoftheEwald 
summation has the octahedral position as its origin. Vectors R,, are grouped in shells 
around this position. It is readily imaginable that upon leaving the first (octahedral) shell 
this grouping of the RI, is no longer an appropriate choice to achieve fastest convergence 
in the Ewald summation. 
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Table 2. Phase shifts 7, in radians at E~ = 0.852 Ryd for host Nb atoms, the tetrahedral 
impurity cluster and the octahedral impurity cluster. The last column displays the M r  radii 
for the different atoms in Bohr. 

Nb host -1,227907 -0.526527 0.897286 0.006503 2.0922 

H tetrahedral 1.164 673 0.060603 0.002 139 0.000051 1.3948 
Nb fint shell -1.225 550 -0.525 584 0.926668 0.006565 2.0922 

H octahedral 1.059 525 0.026228 0.000520 0.000007 1.0267 
Nb first shell -1.223287 -0.524705 0.956334 0.006651 2.0922 
Nb second shell - 1.227 439 -0.526 326 0.903 123 0.006 494 2.0922 

In niobium (a  = 6.238 Bohr) the hydrogen atom occupies a nearly tetrahedral site 
with point symmetry D2d. When leaving this site along the [loo] direction towards the 
so-called octahedral site (point group D4h) the symmetry is reduced to C& ( h  = 4). Table 
2 shows the phase shifts and MT radii used for the Nb(H) system at the different sites. 
The host phase shifts give.rise to a mesh consisting of 8086 tetrahedra (a reduced set of 
3607k-points). TheFermi energyis0.852 Ryd and theFermi surfacecomprisesacentral 
r sheet enclosing holes (153 k-points, 177 triangles) and a JG sheet (612 k-points, 915 
triangles). Note that the JG sheet incorporates both the hole tubes and the N-hole 
pockets [60] for they come from the same root of the KKR equation. The enclosed 
electron volumes are 1.898 and 1.100 for the r sheet and the JG sheet respectively. 
Together with one completely filled Brillouin zone this gives a total of 4.998 electrons 
in the valence band. The wind valence tensor for a hydrogen atom at the tetrahedral 
position is 

0.00000 -0.058 90 0.00000 

0.000 00 0.00000 -0.058 90 1 
1 

0.052 85 0.000 00 0.000 00 z 'e! -=( -wmd 

r 

For an octahedral hydrogen atom the tensor is 

0.072 15 0.00000 0.00000 

0.00000 0.072 15 0.00000 

0.00000 0.00000 -0.241 38 

Z O C '  -=( -wmd 

t 

Note the anisotropy at the tetrahedral position as well as at the octahedral position. Just 
as for Pd(H) no lattice distortion was accounted for and the Friedel sum rule was not 
satisfied. At the average electron density in niobium we find a transport relaxation time 
of about 20 at room temperature. 

The programs are designed to deal with an extra shell of surroundingatoms, although 
this is expected to be of little importance for the electron scattering, as already noticed 
by Oppeneer et a1 [26]. The computer time consumption of the various programs is 
dominated by the calculation of the integrals. Unfortunately this is a program that must 
be executed repeatedly for several positions along the migration path. 
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5. Concluding remarks 

In the context of multiple scattering of Bloch electrons by impurity clusters, a method 
for the calculation of the electromigration wind force on interstitial impurities in FCC 
and BCC metals has been implemented in the form of a FORTRAN computer program. 
Startingfrom a well founded theoretical expression for the wind force on animpurity in 
a jellium, an equivalent expression in a real metal could be justified. When elaborated 
in terms of scattering by MT potentials, vectorial integrals over constant energy surfaces 
in k-space emerge. These vectorial integrals, together with Brillouin zone integrals, 
must be evaluated for general interstitial positions in order to follow, the impurity during 
a migration jump. Although an enormous number of interstitial structure matrices have 
to be calculated at each position of the interstitial, the required computer time remains 
within acceptable limits. The result of a calculation at a certain interstitial position is the 
3 x 3 wind valence tensor, which of course needs additional interpretation before 
making a comparison with experimental effective valences. 

In the following paper the electromigration of small interstitials like H, C, B and 0 
innon-magnetic~cc(Cu,Ag,Ni,Pd,Al) and ~cc(V,Nb,Ta)metalswill beinvestigated 
with the tools developed in this paper. 

Many experiments on electromigration of substitutional impurities have been 
reportedon. Itis thereforeinterestingtoconsidertowhatextent theprogramsdeveloped 
for interstitials could apply to these systems. Although this will be a subject of a future 
publication, it can be stated that at the initial position (i.e. all atoms at lattice positions) 
there is no point at all in calculating the wind force on, for instance, an atom next to a 
vacancy. No interstitial structure matrices are needed, only the integrals connecting 
lattice vectors have to be calculated. However, as pointed out clearly by Lodder [61], 
things get entirely different upon walking the migration path. Nevertheless application 
of the present formalism to the initial position already might reveal valuable information 
concerning the magnitude of the wind valence and its alteration upon leaving the initial 
position by only a small distance. 

Juan Ek and A Lodder 

Appendix 

In this appendix the matrix element 

(*&)I -VR,u, (r  - RI)\*&)) 

as it occurs in (67) will be elaborated for MT potentials. 
The single-particle alloy wavefunction @k(r) obeys 

[-v* + V M T Z  + u , ( x )  - E k ] @ & )  = o  ('41) 

in the interstitial region where VM, is the MT constant. Application of V, from the left 
side yields 

[-v2 + VMTZ + uI(x) - E k ] [ V x @ k ( x ) ]  [-vru,(x)]*k(x) (A2) 

for only u, (x) ,  the local perturbation due to the impurity, and *&) depend on x. 



Electromigration in transition metals: method 7329 

Multiplication of (A2) by Y;(x) from the left-hand side and adding and subtracting 
[v,Y,(x)] [vzY! (x ) ]  gives 
QS ( x ) [ - V , u , ( x ) ] Y , ( x )  = 4; (X)V2[VXYk(X)] 

+ ~ V x Y k ( x ) l [ V ~ ~ : ( x ) l  - [ v r Q k ( ~ ) l [ v 2 ‘ ~ E ( x ) 1  

+ [G,, + u l w  - ~~i\f ik*(~)rv,y~(~)i .  (A3) 
The last two members of the right-hand side of (A3) vanish because of (Al). 

Integration of the left-hand side of (A3) over all space can be restricted to the volume 
inside the muffin-tin sphere of ut  with radius RYT. Using Green’s theorem to convert 
the volume integration to an integration over the surface enclosing this volume, (A3) 
can be integrated 

1 d3x (x)[V,ul ( x ) ] Y w ( x )  = R& d2 [*‘f(X)> V Z Y P ( X ) I , = R ~ ~  (-44) 

Realizing that VxuI(x )  = -VRlu l (r  - R I ) ,  one additionally needs expression (24) with 
n = Iand 

V , [ f i ( K X ) y ~ ( f ) ]  = K Z f i . ( K x ) Y ~ , ( ~ ) ( s ( . . r - ~  - ~ / ‘ , I + , ) D L L ,  

14Rm X = R M  

(A51 
L, 

DLL, = d.? Y L ( i ) f Y L * ( f )  I 

x Re[t:; ~ t ! % ~ . ~  I ( W C I L ( W J .  

This result has been derived earlier for finite clusters [62,63] 
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